Targeted drug delivery of near IR fluorescent doxorubicin-conjugated poly(ethylene glycol) bisphosphonate nanoparticles for diagnosis and therapy of primary and metastatic bone cancer in a mouse model

نویسندگان

  • S. Rudnick-Glick
  • E. Corem-Salkmon
  • I. Grinberg
  • S. Margel
چکیده

BACKGROUND Most primary and metastatic bone tumors demonstrate increased osteoclast activity and bone resorption. Current treatment is based on a combination of surgery, radiotherapy and chemotherapy. Severe side effects are associated with chemotherapy due to use of high dosage and nonspecific uptake. Bisphosphonates have a strong affinity to Ca2+ ions and are widely used in the treatment of bone disorders. RESULTS We have engineered a unique biodegradable bisphosphonate nanoparticle (NPs) bearing two functional surface groups: (1) primary amine groups for covalent attachment of a dye/drug (e.g. NIR dye Cy 7 or doxorubicin); (2) bisphosphonate groups for targeting and chelation to bone hydroxyapatite. In addition, these engineered NPs contain high polyethyleneglycol (PEG) concentration in order to increase their blood half life time. In vitro experiments on Saos-2 human osteosarcoma cell line, demonstrated that at a tenth of the concentration, doxorubicin-conjugated bisphosphonate NPs achieved a similar uptake to free doxorubicin. In vivo targeting experiments using the NIR fluorescence bisphosphonate NPs on both Soas-2 human osteosarcoma xenograft mouse model and orthotopic bone metastases mCherry-labeled 4T1 breast cancer mouse model confirmed specific targeting. In addition, therapeutic in vivo experiments using doxorubicin-conjugated bisphosphonate NPs demonstrated a 40% greater inhibition of tumor growth in Saos-2 human osteosarcoma xenograft mouse model when compared to free doxorubicin. CONCLUSIONS In this research we have shown the potential use of doxorubicin-conjugated BP NPs for the targeting and treatment of primary and metastatic bone tumors. The targeted delivery of doxorubicin to the tumor significantly increased the efficacy of the anti-cancer drug, thus enabling the effective use of a lower concentration of doxorubicin. Furthermore, the targeting ability of the BP NPs in an orthotopic xenograft mouse model reinforced our findings that these BP NPs have the potential to be used for the treatment of primary and metastatic bone cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near IR fluorescent conjugated poly(ethylene glycol)bisphosphonate nanoparticles for in vivo bone targeting in a young mouse model

Bisphosphonate (BP) compounds are widely used in the treatment of bone disorders. This group of drugs with a high affinity to Ca(+2) ions is rapidly attracted to bone mineral, especially in areas of high resorption. We have engineered unique biodegradable BP nanoparticles (NPs) by dispersion co-polymerization of the monomers methacrylate-PEG-BP) and (3-Aminopropyl)mathacrylamide) with the cross...

متن کامل

Doxorubicin-Conjugated Bisphosphonate Nanoparticles for the Therapy of Osteosarcoma

Osteosarcoma is amongst the most common primary malignant tumors of bone and occurs in adolescents and young adults. Current treatment is a combination of both surgery and chemotherapeutics. However, the use of anticancer drugs is still associated with serious side effects. In this article we describe a doxorubicin drug delivery system based on bisphosphonate nanoparticles with a narrow size di...

متن کامل

Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization

Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...

متن کامل

Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization

Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...

متن کامل

Effect of Peptide Derived from Scorpion Toxin on Enhanced Permeability of Doxorubicin Conjugated Gold Nanoparticles in HeLa and MDA-MB-231 Cells

Background: Cell penetrating peptides (CPPs) can enter a cell through the cell membrane, and used in the fields of drug delivery, gene therapy, and cancer therapy by their property transporting various molecules into cytoplasm. Gold nanospheres (GNSs) are a useful tool for molecular imaging, because they are not cytotoxic and have high solubility, excellent light scattering property and ease of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016